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Abstract In the paper we investigate typed (mainly compositional) axiomatizations
of the truth predicate in which the axioms of truth come with a built-in, minimal
and self-sufficient machinery to talk about syntactic aspects of an arbitrary base
theory. Expanding previous works of the author and building on recent works of
Albert Visser and Richard Heck, we give a precise characterization of these systems
by investigating the strict relationships occurring between them, arithmetized model
constructions in weak arithmetical systems and suitable set existence axioms. The
framework considered will give rise to some methodological remarks on the con-
struction of truth theories and provide us with a privileged point of view to analyze
the notion of truth arising from compositional principles in a typed setting.

Keywords Axiomatic theories of truth · Subsystems of first-order arithmetic ·
Truth-theoretic deflationism

1 Introduction

Axiomatic investigations of the truth predicate appear to be pointed at at least three
different kinds of goals.
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– In the first place semantic theories of truth give rise to mathematical struc-
tures that often reach a high degree of complexity; it is thus both insightful and
illuminating to fix collections of principles that hold in these structures.1

– There are, moreover, several examples of mutual reductions of axiomatic the-
ories of truth over a base theory B and extensions of B with set existence
axioms.2 A second way to look at these axiomatic investigations is thus to con-
sider them as attempts to find reductions of ontological commitments to semantic
commitments.3

– A third target is represented is evaluating the ‘metaphysical’ impact that axioms
of truth determine on the underlying mathematical structure. The analysis of
truth-theoretic deflationism, in fact, often inspires technical investigations on
axiomatic theories of truth: some of the results in this area provide concrete
examples of the role played in abstract reasoning by the primitive truth predicate
depicted by the axioms.

The present paper constitutes a contribution to the increasing literature on
axiomatic truth. To give a glimpse of its content, we briefly touch on how it relates
to the three targets above.

The semantic theory that the axioms considered will capture is essentially Tarski’s;
frankly speaking, it is as much Tarskian as it could be. The structure under investiga-
tion accentuates the main traits of Tarski’s solution to the Liar paradox. Building on
[23, 33] and on unpublished work of Richard Heck, we in fact investigate a setting in
which typing is not only forced by the axioms for truth but also by the way in which
the syntax of the object theory is formalized (cfr. §3).

The resulting theories will be essentially typed, compositional axiomatizations of
the truth predicate. They will be shown to belong to the same degree of interpretabil-
ity of an intensionally correct consistency statement for their object theory over a
minimal theory of syntax. By recent results of Albert Visser [46], this would in turn
add a new example to the many already known of mutual reductions of compositional
Tarskian truth and predicative comprehension. This suggests some partial fulfilment
of the second target.

Advocates of deflationism have often proposed axiomatizations of the truth pred-
icate based upon the celebrated T-schema. By contrast the deflationist’s attitude
towards the so-called compositional principles such as (*) ‘a conjunction is true if
and only if both conjuncts are true’ remains somewhat mysterious.4 In recent years,

1Nonetheless, it is still not completely clear in what sense an axiomatic theory of truth can capture a
semantic construction. Fischer et al. [16] tries to fix sufficient conditions in this direction.
2See [21] for a survey.
3Or, possibly, vice versa.
4It has been argued, in [25] for instance, that also in the case of typed truth the diquotationalist can retrieve
all instances of principles in the style of (*). This, however, cannot be equivalent to deriving the formal
counterpart of (*) itself with a compact logic in the background. The reason for this was already known
to Tarski: typed disquotational truth cannot establish single sentences expressing general claims involving
truth. A more sophisticated account is contained in [14]. We refer to a forthcoming work of Richard Heck
for the impact that the framework that we consider can have on the contents of Field’s paper.
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however, the expressive and deductive weakness of the disquotational truth predi-
cate has led many authors to consider the acceptance of those principles as at least
compatible with truth theoretic deflationism.5

Many examples of sound, compositional systems for truth have been proposed
whose truth predicate is in some sense reducible to syntactic or mathematical
resources.6 For instance the theory7 Peano Arithmetic + ‘there is a truth class’ (a.k.a
CT� in [23]) is known to interpretable in PA and also a conservative extension of it.8

Similar results hold for the axiomatization of Kripke’s theory of truth over PA with
induction restricted to arithmetical formulas and for Friedman and Sheard’s FS�. 9
Obviously the restriction on the induction schema of PA plays a crucial role in those
results; nonetheless, if one focuses only on the role of compositional axioms, seman-
tic resources — although indispensable to establish general claims — appear to be
reducible to object-theoretic resources.

The results presented below will suggest that a notion of truth governed by com-
positional axioms of the sort considered in this work, unlike disquotational truth,
is not reducible — in a sense yet to be clarified — to syntactic or mathemat-
ical resources. The equivalence of the compositional principles, modulo mutual
interpretability, to assertions of syntactic nature such as intensional consistency state-
ments for the object theory will suggest, moreover, that these axioms encapsulate
enough metamathematical content to outreach the resources of the object theory.

2 Preliminaries

2.1 Bounded Arithmetic and Arithmetization

We assume some familiarity with subsystems of first-order arithmetic as introduced,
for instance, in [19]. We conventionally consider only first-order, possibly many-
sorted, languages. It is useful to formulate the arithmetical theories that we want to
reason about, the object theories of our theories of truth, in a relational language
extending the language LA of relational arithmetic.10 As usual, given the proviso
concerning our ‘official’ definition of the theories, we will immediately forget about
the restriction imposed to the languages when this is thought to be harmless.

5See, for instance, [14].
6We do not get into a discussion of what ‘reduction’ should precisely mean in this context. Here we are
content with traditional forms of reduction such as conservativity or relative interpretability.
7We mention Peano Arithmetic as it is the standard syntax theory for axiomatic theories of truth. However,
it is not clear, in general, whether many of the results obtained with Peano Arithmetic as base theory
smoothly transfer to a setting in which the syntax is provided by a direct axiomatization of concatenation
or, along similar lines, by a weak arithmetical theory.
8A new, very elegant proof of both claims is contained in [8].
9A relative interpretation KF� in PA can be extracted form the conservativity proof of KF� over PA given by
Cantini in [5]. Moreover, each finite subsystem FSn� of FS� can be shown to be embeddable in the theories
RT<2n, as shown in [20]. By using well-known results on satisfaction classes, then, the conservativity of
FSn� follows. Also, by the reflexivity of PA and Orey’s compactness, FSn� is interpretable in PA.
10Cfr. [19, §I.(e)].
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On occasion we will require our base theories to be sequential. Essentially, a the-
ory is sequential if it can code sequences of variable length of all objects in the sense
of the theory. More precisely, T is sequential iff it directly interprets (i.e. the interpre-
tation is not relativized and identity is mapped into identity) Adjunctive Set Theory,11

that is a theory in the a (first-order) language with ∈ and = whose axioms are:

∃x ∀y y /∈ x (AS1)

∀u,v ∃x ∀y(y ∈ x ↔ (y ∈ u ∨ y = v)) (AS2)

Remarkably, Q is not sequential, but many sequential theories are interpretable
in it.

For many of the arguments employed in what follows the base theory will be S1
2,

which is, among other things discussed shortly, sequential. It is a theory invented
by Samuel Buss in [3] to study polynomial time computability. Notably, the prov-
ably total functions of S1

2 are exactly the p-time computable functions. S1
2 will be

employed in this work in two ways: it will be interpretable in any theory that we
will consider and it will taken to be our preferred environment to formalize syntac-
tic notions and operations. In the remaining part of this section, we will introduce S1

2
and motivate our choice of it.

S1
2 is formulated in the language

L2 =
{
0,S, +, ×, #, |.|,

⌊
1

2
.

⌋
, ≤

}
,

where |.|, # are such that

|x|=�log2(x + 1)	, x#y = 2|x|×|y|;
that is, |x| outputs the length of the binary representation of x (the upper integer part
of the binary logarithm of x + 1) and x#y denotes the power of two with binary
representation of length |x| × |y|. To introduce the axioms of S1

2, we need the notion
of sharply bounded quantification. A quantifier is sharply bounded if it is bounded
by a term of the form |t |, where t is a term of L2. A formula of L2 is Δb

0 if all its
quantifiers are sharply bounded. It is Σb

1 iff it is of the form ∃x < t ϕ with t a term
of L2 and ϕ in Δb

0. The class of Δb
1 formulas is defined in the usual way.

The axioms of S1
2 include the 32 sentences of BASIC (Cfr. Appendix) and the

schema Σb
1 -PIND:

Crucially, # has polynomial growth rate: for every term t (x̄) of L2 we can find a
polynominal P such that for all x1, ..., xn

|t (x1, ..., xn)| ≤ P(|x1|, ..., |xn|).
This makes possible a smooth, intensional development of the syntax of formal sys-
tems inside S1

2: definitions by recursion of syntactic notions are naturally formalized

11This definition is due to Pavel Pudlák.



A Note on Typed Truth and Consistency Assertions 93

by stipulating the existence of a sequence coding the course of values of the function
in question. Theories such as IΣ1 have enough induction to prove the relevant prop-
erties of these sequences.12 By Parikh’s Theorem,13 this is not possible in theories,
such as IΔ0, whose provably total functions can only cope with linear increases of the
length of sequences. By contrast, S1

2 is just right to deal with polynomial increases of
length of sequences.

For the details of the coding we refer to [3, 4]. Sequences are coded by strings
of 0’s and 1’s; moreover, for any given language LW , we assume Δb

1-definitions
TermLW

(x), FmlLW
(x), SentLW

(x), PrfLW
(x), ProofLW

(x, y) of the sets of terms,
formulas, sentences of the language of an arbitrary object theory, of proofs in the
theory W and of the relation of being a proof in W of the formula y of LW . Also,
we take the set of theorems of W to be defined by the ∃Δb

1-formula ProvU(x) :↔
∃y ProofW(x, y). A special status the coding procedure we are assuming is reserved
to the function that assigns to each number its numeral. If n is defined as

S· · ·S︸ ︷︷ ︸
n times

0 (1)

then NUM(n), that is the code of Eq. (1), will be exponential in n and we would not
be able to find bounds to the sequence defining NUM(x). Therefore dyadic numerals
have to be employed in this procedure, that is

0 = 0 1 = S 0

2n = 2 × n 2n + 1 = 2 × n + 1.

This definition renders the function num(x) that assigns to a number n the code
of the corresponding dyadic numeral provably total even in IΔ0, as now num(n)

becomes of order na for a constant (standard) a. Moreover, S1
2 can prove the total-

ity (as it provides a bound for its outputs) of the function that takes codes t, r, v

of terms and a variable and returns the code of the result t (r/v) of replacing all
occurrences of the variable coded by v in t by r. As to notational conventions, we
will often abuse of Gödel corners and employ them together with Feferman’s dot
convention.

We conclude this section by outlining two further attractive features of S1
2. The

first links directly to the considerations just sketched: S1
2 is synonymous (i.e. defi-

nitionally equivalent) with a theory of strings developed in [12] based on primitive
concatenation and substitution. The second is represented by the finite axiomatizabil-
ity of S1

2 and explains why S1
2 is often preferred to theories such as IΔ0 + Ω1,14 for

12Cfr. [19, §I(c),(d)]
13Parikh’s Theorem states that if ϕ(x̄, y) defines a total function in IΔ0, then there is a term t (x̄) of L such
that

IΔ0 
 ∀x̄

∃y < t(x̄) ϕ(x̄, y).

By Parikh’s theorem therefore, any IΔ0-provably total function can only increase the length sequences
of 0–1 words linearly.
14For a proof of the finitely axiomatizability of S1

2, we refer to [19].
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which a similar result is not yet known. Essentially, one shows that all instances of
Σb

1 -PIND can be retrieved via the equivalence of every Σb
1 -formula ϕ(x) of L2 with

a single property that encapsulates the p-time computation expressed by ϕ(x).

2.2 Cuts and Interpretations

We choose to focus our attention on logical properties of compositional axioms and,
on occasion, of disquotational principles. The theories of truth considered below,
therefore, will not contain induction principles or related schemata in which the
presence of semantic vocabulary is allowed. The possibility of performing inductive
reasoning in our theory of truth, however, still appears to be important if we require
our axiomatization of the truth predicate to capture portions of metamathematical
reflection on the object theory. Following a standard practice initiated by Robert
Solovay, the lack of induction will be compensated by the use of definable cuts.15

Cuts are initial segments. A formula ϕ(x) is called inductive in T ⊇ Q if and
only if

T 
 ϕ(0) ∧ ∀y (ϕ(y) → ϕ(Sy))

ϕ(x) is a T-cut if and only if, additionally,

T 
 ∀x, y (ϕ(x) ∧ y ≤ x → ϕ(y))

By a well-known result of Solovay, every inductive formula has a subcut:

Lemma 1 Let ϕ(x) be inductive in Q. Then there exists a Q-cut ψ(x) such that

Q 
 ψ(x) → ϕ(x).

Theψ in Lemma 1 is obtained by closing ϕ(n) for each n under transitivity of≤ so
that this holds for all m ≤ n as well. It is often useful, however, to employ a slightly
modified notion of definable cut. The modifications are justified by the following
Lemma:

Lemma 2 Let T interpret S1
2 and I be a T cut. Then we can find a subcut J of I such

that T proves the following:

J (x) ∧ J (y) → J (x + y) (2)

J (x) ∧ J (y) → J (x × y) (3)

J (x) ∧ J (y) → J (x#y) (4)

Therefore, in what follows, a definable cut can always be taken to be closed under
addition, multiplication and the smash function. It is also convenient to assume that
the cuts considered satisfy the axioms of S1

2.

15Solovay’s original note is unpublished. The standard reference is now [19].



A Note on Typed Truth and Consistency Assertions 95

Let T and W be theories containing S1
2.
16 A relative translation of LT into

LW can be described as a pair (δ, F ) where δ is a LW -formula with one free
variable — the domain of the translation — and F is a (finite) mapping that takes n-
ary relation symbols of LT and gives back formulas of LW with n free variables. The
translation extends to the mapping τ :

– (R(x1, ..., xn))
τ :↔ F(R)(x1, ..., xn);

– τ commutes with propositional connectives;
– (∀x ϕ(x))τ :↔ ∀x (δ(x) → ϕτ ) and (∃x ϕ(x))τ :⇔ ∃x (δ(x) ∧ ϕτ ).

An interpretation K is then specified by a triple (T , τ, W) such that for all sentences
ϕ of LT ,17

T 
 ϕ ⇒ W 
 ϕτ .

We write K : W � T for ‘K is an interpretation of T in W’ and W � T for ‘there is
an interpretation of T inW’. Moreover, we let

W ≡ T :↔ W � T ∧ T � W,

and read T ≡ W as ‘T andW are mutually interpretable’. T locally interprets W—in
symbols, T �loc W — if and only if every finite subsystem of W is interpretable in
T. An interpretation is direct if and only if it maps identity to identity and it does not
relativize quantifiers. We will often not distinguish between an interpretation and the
relative translation that supports it.

If K : T � W and M is any model of T, then K can be seen as a method for
defining a model MK of W inside M. We state two ways to compare MK and M,
depending on whether T has full induction or not.

Lemma 3 If K : T � W and T has full induction, then for any M � T we find a
(uniformly) M-definable embedding ofM into an initial segment of MK .

Lemma 3 is readily obtained by noticing that in M we define an injection
f : M → MK such that

f
(
0M

)
= 0M

K ; f
(
x +M 1M

)
= f (x) +MK

1M
K

.

Since M has full induction, one can actually show that f is indeed the required
isomorphism.

If, on the other hand, T does not have full-induction, the comparison between the
numbers as given inM and MK is provided by what is known as Pudlák’s Lemma.

Lemma 4 (Pudlák) If K : T � W and T is sequential, then there is a T -cut I that is,
provably in T, an embedding of I into an initial segment of the numbers in the sense
of W.

16We recall that the theories are assumed to be formulated in a relational language. We owe to Albert
Visser’s work this description of interpretations.
17The equivalence of ‘axioms’ and ‘theorems’ interpretability can break down in the context of the
formalization of the interpretability relation in weak theories. We refer to [44] for details.
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For a more careful statement of the result we refer to [27]. A proof is contained
in [38]. We just notice that in the proof we construct in T a formula ϕK(x, y) that
provably defines an isomorphism between a T-cut I and a proper initial segment J
of the W-numbers as seen by K. It is important to notice, however, that there is in
general no LW -formula ψ(x) whose image under K defines the cut J in T.18

In what follows the next lemma will play an important role:

Lemma 5 (Wilkie, Nelson.) Q interprets S1
2 on a definable cut.

Since Q does not prove the usual properties of ≤, the crucial component of the
proof consists in showing that the interpretation is actually a cut. This makes possible
the downwards preservation of Π1-sentences (cf. [19, V.5(c)]).

We conclude this preliminary section with a brief description of the incomplete-
ness phenomena determined by the techniques just described. Given a theory T
containing Q and a Σ1 provability predicate π for T satisfying the usual provability
conditions, Gödel’s Second Incompleteness Theorem tell us that T does not prove
¬π(�0 = 1�). To obtain this, one usually shows that ¬π(�0 = 1�) is actually
equivalent to a Gödel sentence for T. First strengthenings of this result, when T is a
reflexive extension of PA, were presented by Feferman in [10]. In particular, it was
there shown that T + ¬π(�0 = 1�) is not interpretable in T.19 Moreover, since
T + π(�0 = 1�) is Π1-conservative over T, then we can find an interpretation of
T + π(�0 = 1�) in T.20

Further strengthenings are essentially due to Pavel Pudlák: let T contain Q and τ

be a Σ1-definition of T in T. For any T-cut J, T does not prove

∀x (x ∈ J → ¬Proofτ (x, �0 = 1�)),
where Proofτ (x, y) is a Δ0-definition of ‘x is a proof of y’. A beautiful, related form
of second incompleteness theorem is the following: for any T containing Q, if T is
defined by a Σ1-formula, then T does not interpret Q + ConT . The key observations
here are that Gödel’s Second Incompleteness theorems can be meaningfully stated
and proved in S1

2 and that S1
2 + ConU is interpretable in Q + ConU on a definable

cut (Lemma 5). The facts just stated depend on the coding procedure being used, e.g.

18Another important principle characterising definable cuts is the so-called outside big, inside small
principle. This denomination, as far as the author knows, is due to Albert Visser. It informally states that
despite that fact that a cut is an initial segment provably in a theory, the very same theory can construct,
for every number of the theory, a proof that that number belongs to the cut. That is, with T interpreting S1

2
and ϕ(x) a T-cut,

T 
 ∀x ProvT (�ϕ(ẋ)�), (5)

where ProvT (x) is as in §2.1. Essentially, to obtain (5) one notices that since the cut is closed under addition
and we employ efficient numerals (see p. 5), for any theory-number a one can combine the standard proof
of ϕ(0) with a − 1 universal instantiations of ∀x (ϕ(x) → ϕ(2x)) or ∀x (ϕ(x) → ϕ(2x)).
19Otherwise, T formalises the statement ‘if T is consistent, so is T+¬π(�0 = 1�)’. But then T+¬ π(�0 =
1�) would prove its own consistency.
20If T is sequential and has full induction, in fact, ‘T interprets W’ is equivalent to ‘every Π1-sentence
provable inW is provable in T’.
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to formalise ConU . Versions of the second incompleteness theorem that avoid some
specific assumptions on the formalization of the syntax — the choice of the logical
calculus, in particular — can be found in [45].

The following result is due to [37] and it will be quite useful in what follows.
It is a consequence of Alex Wilkie’s characterization of the class of Π1-sentences
interpretable in Q as the class of Π1-sentences σ that are provable in IΔ0(exp):

Proposition 1 For any Π1-sentences π , π ′:
Q + π � Q + π ′ ⇔ IΔ0(exp) 
 π → π ′.

3 Typed Theories of Truth and Expressions

As we anticipated in the introduction, our main target is to characterize a specific set
of compositional truth axioms resulting from a non conventional way of constructing
axiomatic theories of truth. The idea behind the construction is essentially Tarski’s,
although the interest in this alternative setting was recently revived by Richard Heck
and Volker Halbach. The author’s works [33] and [35] represent an available starting
point for the investigation of this framework. Unlike the present, those papers mainly
focus on the role of inductive reasoning in the proposed setting.

3.1 A Widely Applicable Framework

To give an informal picture of the setting we are interested in, a model of our theory
of truth will be a many-sorted structure compounded by three disjoint universes: the
domain D of the quantifiers of LU — where U is our object theory — a domain of
‘syntactic’ objects that is disjoint from D, and a further (still disjoint from the other
two) universe of assignments, that is objects representing sequences of elements ofD.
The salient component of the new setting is that the extension of the truth predicate
consists of pairs of objects in the ‘syntactic’ domain and disjoint sequences of D-
objects. The objects to which truth is informally attributed are still LU -sentences, but
their formal counterparts to which the semantic vocabulary is applied do not belong
to the domain of discourse of quantifiers of LU but to the domain of discourse of a
disjoint, ‘syntactic’ universe.

More formally, we start with an arbitrary (first-order) object theory U and its lan-
guage LU . We only require U �S1

2. When the sequentiality of U is required, we will
state this explicitly. We expand this language to a three-sorted language LT: variables
are labeled via the set of sorts {o, s, sq};21 LT will also contain, besides nonlogical
constants proper of LU , also the constants proper of L2,22 the function symbol ·(·) of
type (sq, s) → o and the predicate symbol Sat of sort (s, sq). The former will give
rise to expressions of the form a(i) = x, stating that the ith element of a sequence

21For heuristic, they label respectively ‘object-theoretic variables’, ‘syntactic variables’, ‘sequence
variables’. Nonlogical constants, for clarity,will occasionally also be labeled by sorts.
22For simplicity, we may require them to be unofficial abbreviations of their relational counterparts.
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Table 1 Axioms of T[U ]

A. Axioms of U (relativized to sort o)

B. Axioms of S1
2 (relativized to sort s)

C. ∃b (∀j (j �= i → a(j) = b(j)) ∧ b(i) = x);

D. 1. Sat(�R(v1, ..., vn)�, a) ↔ R(a(1), ..., a(n))

2. Sat(�¬ ϕ�, a) ↔ ¬Sat(�ϕ�, a)

3. Sat(�ϕ ∧ ψ�, a) ↔ Sat(�ϕ�, a) ∧ Sat(�ψ�, a)

4. Sat(�∀viϕ�, a) ↔ ∀b (∀j (j �= i → a(j) = b(j)) → Sat(�ϕ�, b))

a is the D-object x, whereas the latter will be characterized as a satisfaction predi-
cate. For readability, we write x, y, z, ..., i, j, k, l, ... and a, b, c, ... for variables of
sort o, s and sq respectively. Greek letters ϕ,ψ, ... are taken to range over formulas
of LU , A, B, C . . . over formulas of LT.

We list the axioms of the theory T[U ] in Table 1. The notation T[U ] is suggestive:
the theory of truth is interpreted as an operator that takes an arbitrary object the-
ory U in predicate logic and yields a compositional, Tarski-style theory of truth for
it. Axiom C is essentially due to [7] and tells us that we can always manipulate an
assignment a so to create the assignment b which differs only in one element from
it. This axiom is essential for the formulation of the theory of truth in terms of satis-
faction (cfr. D.4). It is worth noticing that in virtue of C, for instance, it is possible to
consider variable assignments as functions assigning arbitrary elements of D to the
first n variables of LU and 0 to all the remaining variables. We will resort to this pos-
sibility below (e.g. in the proof of Theorem 1). We also assume — in C, D.1, D.4 —
the notational shortcut represented by the quantification over indices of variables of
sort o as variables of sort s. The axioms of S1

2, as we mentioned already, guarantee a
smooth formalization of the syntax of U.

In [33] extensions of T[U ] were considered. They were obtained by adding to
T[U ] a ‘syntactic’ induction principle

A(0) ∧ ∀k(A(k) → A(Sk)) → ∀k A(k) (S-Ind)

open to all formulas A of LT but restricted only to variables of sort s; in other words,
we have in Eq. (S-Ind) that 0 is of sort s and S of type s → s. T[U ] can be shown
to be, in many cases, essentially weaker than T[U ]+(S-Ind). . Nonetheless, they both
prove the following:

Lemma 6 For any LU -formula ϕ(vi1 , ..., vin) with the free variables displayed,23

T[U ] proves
∀j1, ..., jn (Sat(�ϕ�(j1/i1, ..., jn/in), a) ↔ ϕ(a(j1), ..., a(jn))) (6)

23We recall that, by assumption, we can assume that there are no closed terms in the language of U apart
from variables.
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By a very general argument (cfr. [33], Thm. 3.11), any model of U can be shown
to be expandable to a model of T[U ] and T[U ]I .24 Thus:

Lemma 7 T[U ] is a conservative extension of U.

Other results on extensions of T[U ] are more sensitive to the choice of U and we
refer to [33] for their description.

The study of theories of truth with ‘disentangled syntax’ appears to be signifi-
cant in several respects. Above all, they appear to be a direct axiomatization of the
Tarskian picture of the metatheory ([41]): the theory of syntax is taken to be inde-
pendent from the choice of the object theory. This framework thus renders the theory
of truth quite general; Tarski-style axioms of truth can be provided for a wide range
of base theories, even for theories that are not expressive enough to formalize their
own syntax, such as theories formalizing portions of epistemological and metaphys-
ical discourse. In [33, 35] and [36] further applications were considered: theories
in the style of T[U ]+(S-Ind). Offer in fact the possibility of formalizing informal
metamathematical practice, in which expressions are clearly distinguished from the
objects of the intended domain of discourse of the mathematical object theory; more-
over, they enable one to examine more closely the structure of the much discussed
conservativeness argument against deflationism [29, 39].

In the following sections, on the other hand, we will mostly focus on charac-
terizing the truth predicate of theories in the style of T[U ] by relating them to
foundationally relevant arithmetical systems and principles.

4 The Henkin-Feferman Construction

Henkin’s proof of the completeness theorem displays a method for exhibiting a term
model for an arbitrary, consistent set of sentences S of a first-order language. Gen-
eralizing and refining previous work of Bernays and Wang, Feferman offered in
[10] a full formalization of the construction in extensions of PA plus a Π1-sentence
expressing the consistency of S in a canonical way. Following Visser, we refer
to the resulting arithmetized model as the ‘Henkin-Feferman construction’. Suit-
able improvements of this method will give us significant insights on the notion of
truth captured by the theories introduced in §3, therefore they deserve an in-depth
treatment.

Feferman’s proof required at least Δ2-induction to be carried out. But it is possible
do better. The result can be improved significantly by employing the method of cuts.
In the next lemma, due to Pavel Pudlák, it is shown how to find an optimal improve-
ment Feferman’s result by replacing PA with S1

2, and even Q. We recall some of our
assumptions: U has an axiom set that is Δb

1 in S1
2. ProvU(x) and ConU are then taken

to be defined accordingly.

24This also implies that for any model M of U there is an elementary extension N of it which satisfies
T[U ].
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Lemma 8
(
S1
2

)
. S1

2 + ConU � U .

Proof We follow Visser’s proof given in [44] to some extent, in which it is also
shown that S1

2 suffices as metatheory for the argument. The arithmetization method
employed will thus be along the lines of the one mentioned in §2.1. One can check
that the idea of looking for the leftmost consistent path in the tree whose paths are
completions of U is miniaturized in the proof.

Reasoning in S1
2 + ConU , we expand LU to the language L′

U with a countable
set of new constants: for any L′

U -sentences of the form ∃vϕ and ∀vϕ, one adds to
the language corresponding constants c∃vϕ and c∀vϕ . Now we relate 0-1 strings to
L′

U -sentences via the following Σb
1 -formula:

Pc(x, y) :↔ x is a sequence, y is a sentence of L′
U ∧(

(x)y = 0 ∨ (∃u < |x|)((x)u = 1 ∧ y = ¬· u) ∨
(∃v,w< |x|)((x)v = 0 ∧ var(w) ∧ v = �∃wϕ� ∧ y = �ϕ(c∃wϕ)�) ∨
(∃v,w< |x|)((x)v =1 ∧ var(w) ∧ v= �∀wϕ� ∧ y = �¬ ϕ(c∀wϕ)�)

)

for an arbitrary formula ϕ of L′
U with one free variable. Pc(x, y) is clearly Σb

1 and it
should be also clear the essential role of the smash function to perform the required
substitutions. Let us denote with PCx the set of sentences y so defined and let Tree(x)

be a predicate expressing that PCx is consistent with U. Crucially, if Tree(x), either
x�〈0〉 or x�〈1〉 hold.25 We define next the relation among binary sequences of ‘being
on the left’, that is

x <l y :↔ (∃u < min{lh(x), lh(y)})(∀v < u)((x)v = (y)v ∧ (x)u = 0 ∧ (y)u = 1),

so saying that x whose PCx is consistent with U is ‘on the leftmost path’ becomes:

Path(x) :↔ Tree(x) ∧ ¬∃y (Tree(y) ∧ y <l x) (7)

If we further define an order ≺i such that x ≺i y means x is an initial subsequence of
y, we see that ≺i defines a linear order between elements of Path; that is, S1

2 +ConU

proves:

∀x, y (Path(x) ∧ Path(y) → (x ≺i y ∨ x = y ∨ y ≺i x)).

Now let us consider the numbers defined by the formula

J (x) :↔ ∃y (Path(y) ∧ x = |y|) (8)

We claim that J (x) is inductive. Obviously, the empty sequence 〈〉 is in J. Also, by
the reasoning above, if x is in J, then there is some y in Path such that x = |y|, then
also x + 1 is in J. By Lemma 1, we shorten J (x) to a cut I (x).

25Here � denoted sequences concatenation.
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The interpretation (·)H , corresponding to a model of U, is specified by the domain
of Henkin constants

δ(x) :↔ ∃y
(
I (y) ∧ SentL′

U
(y) ∧ (y = �∃vϕ� ∨

y = �∀vϕ�) ∧ x = cy
·

)
,

by a substitution function

sb(�ϕ�, y) := the (code of the) result of substituting the elements of y

for the free variables in ϕ,where y is a sequence of δ-objects;
and by a predicate

H(x) :↔ I (x) ∧ SentL′
U
(x) ∧ ∃z (Path(z) ∧ |z| ≤ x ∧ x ∈ PCz).

In particular one has, by abuse of notation and denoting with x̄ strings of objects:

RH (x̄) :↔ δ(x̄) ∧ H
(
sb

(
R· v̄, x̄

))
for any relation symbol R in LU (9)

Moreover, provably in S1
2 + ConU , we have:

∀x ∈ SentIL′
U

(
H(¬· x) ↔ ¬H(x)

)

∀x, y ∈ SentIL′
U

(
H(x ∧· y) ↔ H(x) ∧ H(y)

)

∀�ϕ(v)� ∈ FmlIL′
U

(
H(∀· v�ϕ�) ↔ ∀w(δ(w) → H(sb(�ϕ(v)�, w)))

)

In the last line, ϕ(v) is a formula with only one free variable. Crucially we have on
the one hand, with ProvU(x) as before,

∀x
(
SentILU

(x) ∧ ProvU(x) → H(x)
)

, (10)

which is an immediate consequence of the fact that if x ∈ SentLU
and x ∈ I , then

either x ∈ PCy or ¬· x ∈ PCy . On the other, we have that for all ϕ ∈ FmlL′
U

∀y
(
δ(ȳ) →

(
H(sb(�ϕ�, ȳ)) ↔ ϕH (ȳ)

))
. (11)

Now let ψ be a LU -sentence provable in U. By the assumption on LU , S1
2 +ConU

proves that �ψ� is in I (cf. footnote 18) and that SentLU
(�ψ�). Thus H(�ψ�). Thus,

by Eq. 11, ψH .
All these conversions, as shown in [44], are available in S1

2, although a finer
grained notion of interpretability—smooth interpretabilty—has to be employed.

Finally Eq. (10), combined with Lemma 5 and our assumptions on U, yields:

Corollary 1
(
S1
2

)
Q + ConU � U .

This completes the preliminary work needed to characterize the truth predicate of
theories of the form T[U ]. We conclude the section with a brief digression on the
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Table 2 CT�

CT1 ∀x,y
(
CtermL(x) ∧ CtermL(y) → (Tr x =· y ↔ val(x) = val(y))

)
CT2 ∀x (SentL(x) → (Tr ¬· x ↔ ¬Tr x))

CT3 ∀x,y (SentL(x ∧· y) → (Tr x ∧· y ↔ (Tr x ∧ Tr y)))

CT4 ∀x∀y (SentL(∀· yx) → (Tr ∀· yx ↔ ∀z (CtermL(z) → Tr x(z/y))))

analysis of the arithmetized models arising Henkin-Feferman construction when U
is taken to be PA.

4.1 Classical Compositional Truth and the Henkin Feferman Construction26

The theory CT� is formulated in the language L of arithmetic plus a unary predicate
Tr not allowed to appear into instances of the schema of induction; its axioms are the
axioms of PA and the sentences displayed in Table 2.

Let M � PA and S ⊆ M. S is a full truth class for M if and only if (M, S) �
CT�.27 Moreover, S is a partial, nonstandard truth class for the nonstandardM � PA
if and only if there is some a ∈ M−N such that (M, S) satisfies CT1-4 for sentences
whose codes are < a. A remarkable fact concerning truth classes for models of PA is
the following:28

Fact 1 (Lachlan [31], Kaye [28]) . If M � PA is countable, nonstandard and S a
partial truth class forM, then M is recursively saturated.

As we have seen the Henkin-Feferman construction gives rise to models equipped
with truth predicates: truth-theorists have thus recently asked for a comparison
between models of PA admitting a truth class and models arising from the Henkin-
Feferman construction.29 A natural question appears to be: given a countable model
M � Q + ConPA, is its internal model H � PA given by Lemma 5 and Lemma 8
recursively saturated ?

We briefly recall how to obtain H in M: one considers an interpretation N of
S1
2 + ConPA in Q + ConPA on a definable cut N0. The Henkin Feferman construc-

tion (Lemma 8) is then carried out within N0 to construct the internal model H of
PA. As it was shown in the proof of Lemma 8, the truth predicate of the model works
for sentences in a M-definable subcut I of N0. Furthermore, Pudlák’s lemma can be

26This digression has been thoroughly rewritten after receiving the comments of an anonymous ref-
eree that highlighted the many weak points of the original formulation and suggested detailed and clear
improvements. I thank him for the precious and insightful advices.
27Cf. [23, Definition 8.7].
28Cf. [28, p. 228]. A brief legenda. LetM � PA be nonstandard. A type P(x̄) over PA is a set of formulas
ϕ(x̄) such that the set of all ϕ(c̄) with ϕ(x̄) ∈ P(x̄) and c̄ a finite sequence of new constants is consistent
with PA. P(x̄) is realized in M if and only if there is a sequence ā ∈ |M| such that M � ϕ(ā) for all
ϕ(x̄) ∈ P(x̄). P(x̄) is recursive if and only if the set of codes of formulas ϕ(x̄) in P(x̄) is recursive. A
model M of PA is recursively saturated if and only if every recursive type on M is realized in M.
29We have mainly [15] in mind.
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applied as S1
2 is available in N0: there is thus aM-cut I ∗, a subcut of N0, and anM-

definable embedding of I ∗ into an initial segment I ∗∗ of the H-numbers as seen by
M via the composition of N and the interpretation H given by the Henkin-Feferman
construction. By employing the shortening techniques it is possible to identify I ∗ and
I above: as a result, from the perspective of M, one might construct a M-definable
subcut of N0 shared byM-numbers andH-numbers. In this wayH is coded by num-
bers that are actually an initial segment of the H-numbers. Now by combining what
we have just said and Fact 1, we notice that H will be recursively saturated unless
any I ∗ ⊆ N0 defines the standard numbers.30 If some I ∗ does not define the standard
numbers, in fact, the truth predicate of the Henkin-Feferman construction will give
rise to a nonstandard truth class; by Fact 1,H would be recursively saturated.

A further question is whether the Q + ConPA-subcut I of N0 to which the truth
predicate of the Henkin-Feferman construction applies is in fact a proper initial seg-
ment of the H-numbers. It turns out that there is no definite answer to this question,
although it is possible to construct models of Q + ConPA in which the truth predicate
of the Henkin Feferman construction indeed applies only to a proper initial segment
of the numbers in the internal model H. To construct such a model it would suffice
to display a model N of Q + ConPA in which there are some N -definable cuts that
do not satisfy PA. An example, due to Albert Visser, is obtained as follows: let A be
a finitely axiomatized subtheory of PA extending Q and define the theory

V := A + ConPA + {¬ConJ (A + ConPA) | J is an(A + ConPA)-definable cut}
This theory is consistent by Pudlák’s strengthening of Gödel’s Second Incomplete-
ness Theorem. Let N � V and assume, seeking a contradiction, that PA is available
in anyN -cut J. Again by downwards persistence of Π1-sentences, ConPA is available
in J together with ¬Con(A + ConPA). But PA is essentially reflexive,31 thus ConA,
so ¬ConPA will hold in J. Since ConPA is in J, we reached the desired contradiction
and displayed a model of Q + ConPA in which no cuts satisfy PA.

In the following two sections, as promised, we focus on the mutual interpretability
of T[U ]—and variants thereof— andQ+ConU for an arbitrary choice ofU. We will
see that, when U is not finitely axiomatized, a further axiom stating that all axioms of
U belong to our special class of true sentences is needed in order to obtain the result.

5 Truth, Reflection and Arithmetized Models

5.1 Reflection without Induction

Results akin to the ones described in this section seem to be known as folklore. The
author became aware of them from (forthcoming) work by Richard Heck [24]. We

30As the same referee has pointed out to the author, cardinal arithmetic represents a simple example of
a nonstandard model of arithmetic Q + ConPA in which all definable cuts isomorphic to cuts of internal
models of PA are the standard numbers. It would be interesting to find examples of models of stronger
theories that enjoy this property.
31That is, any pure extension W of it proves ConB for any finite B ⊆ W .
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show that if a compositional theory of truth is strong enough to prove that all axioms
of the base theory are true, then the former is not interpretable in the base theory
as it will prove the consistency of the base theory on a definable cut. We focus on
T[U ], but the arguments given are more generally applicable (cf. Heck’s paper). Some
remarks in this direction will be given at the end of the section. Let us first fix some
notation.

We say that U is finitely axiomatized if its set of nonlogical axioms is finite. We
call U schematic, in the sense of [11, 32], if U is axiomatized by a finite set of sen-
tences plus the substitution instances of a finite number of schemata. We understand
schemata as formulas of the form Φ(X) — in which X is a free predicate variable;
their instances are then formulas of LU resulting from replacing, in Φ(X), each
occurrence of X(t1, .., tn) by a fixed formula ψ(t1, ..., tn) together with a suitable
renaming of bound variables in Φ in order to avoid clashes.

We define

AxTU :↔ ∀a ∀k (AxU(k) → Sat(k, a))

where AxU(k) is again as in §2.1, suitably relativized to the syntactic sort. We will
also occasionally employ the sentence

ScTU :↔ ∀a ∀k (ScU(k) → Sat(k, a))

where ScU(k) is a Δb
1 predicate expressing that k is a substitution instance of one of

the (finitely many) axiom schemata of U, if present.
ConU and ProvU(k) are as above. We will show:

Proposition 2
(i) if U is finitely axiomatized, T[U ] � Q + ConU ;
(ii) T[U ] + AxTU � Q + ConU .

Proposition 2 is a corollary of the stronger

Lemma 9
(i) if U is finitely axiomatized, T[U ] � S1

2 + ConU ;
(ii) T[U ] + AxTU � S1

2 + ConU .

The intuitive picture of the strategy is as follows. The crucial step is how to suit-
ably relativize ConU to a cut in which S1

2 is available. Reasoning in the more general
case in which U is arbitrary, we first identify a T[U ] (resp. T[U ] + AxTU )-cut whose
numbers support some lemmata of syntactic nature concerning U. We then prove a
special form of global reflection for U on a suitable cut shortening the original one.
This will suffice to give us consistency of U on this cut.

The lemmata of syntactic nature that we are going to prove first are needed to
establish useful facts such as ‘substitution of identicals is preserved under the scope
of the satisfacton predicate’. Claims of this sort are usually obtained by induction
on the complexity of the relevant formula ϕ falling under the scope of the truth or
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satisfaction predicates.32 In practice, this is not possible as we do not have such
an induction principle in T[U ]. Therefore we employ T[U ] (resp. T[U ] + AxTU )-
definable cuts.

These syntactic claims are in turn needed to prove that logical axioms are true and
that rules of inference of the logical calculus in which U is formulated preserve truth
if formulas belonging to some suitable initial segment of our numbers are considered.
We notice in fact that, by the very construction of T[U ], no nonlogical axiom schema
of U is extended to contain nonlogical vocabulary from LT −LU . So, for instance, if
U is ZFC, elements LT −LU are not allowed into instances of the schema of replace-
ment. This does not mean, however, that logical rules and logical axiom schemata of
U are not extended to LT. This is for the main reason that if we restrict logic as well,
it would be hard to justify T[U ] as a theory, at least in the most straightforward read-
ing of the word. If U is formulated in a Hilbert style calculus in which Modus Ponens
and Generalization are the only rules of inference,33 the lemmata in question enable
one to deal with axioms and rules of the form

∀viϕ → ϕ(vj /vi); (Gen) if Γ 
 ϕ(vi), then Γ 
 ∀viϕ

with the usual conditions on legitimate substitution and on Γ .34 Let

a
i∼ b :↔ ∀j (j �= i → a(j) = b(j)).

Moreover, let lc(k) be a Σb
1 function in S1

2 keeping track of the logical complexity
of the formula k.35 For our purposes it suffices to define the logical complexity of a
formula as the number of propositional connectives and quantifiers in it, we do not
require finer grained notions. We have

Lemma 10 The formula K(m) defined as 36

Freev(i, k) ∧ lc(k) ≤ m ∧ a
i∼ b ∧ a(i) = b(j) → (Sat(k, a) ↔ Sat(k(j/i), b))

is inductive in T[U ].

Proof K(m) just says: if a formula ϕ(vi) of logical complexity less than m is satis-
fied by a variable assignment a, b differs from a only in what it assigns to i, and a(i)

is just b(j), then b satisfies ϕ(j/i).
K(0), that is the case in which k is the code of an atomic formula, follows

immediately from D.1. Assuming K(n) we prove K(n + 1). All cases are quite

32Cfr. [23, § 8.6].
33As it is widespread practice when arguments of the kinds discussed here are involved.
34Here Γ is simply a finite set of formulas, not a multiset.
35For clarity, we notice that lc(.) formalizes a function of type s → s.
36For readability, we omit quantification over parameters.
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straightforward given the inductive hypothesis. For instance in the case of the
universal quantifier, we have:

Sat(�∀vkϕ(vi)�, a) ↔ ∀c
k∼ a Sat(�ϕ(vk, vi)�, c) D.4

↔ ∀d
k∼ b Sat(�ϕ�(j/i)), by K(n) for suitable d

↔ Sat(�∀vkϕ(vj )�, b) D.4

Lemma 1 then immediately gives us

Corollary 2 There is a T[U ]-cut N in which the axioms of S1
2 are available and that

shortens K(k).

By an analogous strategy, we obtain

Lemma 11 T[U ] proves that the formula M(m):37

¬Freev(i, k) ∧ lc(k) ≤ m ∧ a
i∼ b → (Sat(k, a) ↔ Sat(k, b))

is inductive.

Corollary 3 There is a T[U ]-cut I that shortens M(k) in which the axioms of S1
2 are

available.

Let us call L(x) a subcut shared by the cuts N and I constructed in Corollaries 2
and 3. Let now AxLTU the LT sentence stating that all logical axioms of LU are true.
We have

Corollary 4 There is a T[U ]-cut in which AxLTU holds.

Proof Sketch Axioms that are of the form of single sentences follow from the
provability of the T-biconditionas in T[U ] (Lemma 6). Propositional schemata fol-
low from compositional axioms. Axioms for quantification are obtained by a crucial
contribution of Corollary 2. In fact, any T[U ]-cut in which Corollary 2 holds would
work, a fortiori we can employ L(x).

The corollaries just stated are somewhat dependent on the choices of the calculus
in which U is formulated. It is worth noticing that although it is in principle possi-
ble to define AxTU in such a way to stipulate the truth of the logical axioms U, still
we would need Corollaries 2 and 3 to hold in a suitable T[U ]-definable cut to guar-
antee the truth-preserving character of rules of inferences involving quantification,
if present, essential to obtain Lemma 12 below. A further way out would consist in
formulating U in a Hilbert-style calculus in which Modus Ponens is the only rule of

37Again quantification over parameters is omitted.
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inference.38 We could then be dispensed from working in subcuts of L above. At any
rate, the strategy just outlined is clearly superior as it renders the results below less
sensitive to the choice of the calculus.

Let now J be a cut, we define

ConJ
U :↔ ¬∃k (J (k) ∧ ProofU(k, �0 = 1�))

Lemma 12
(i) Let U be finitely axiomatized. Then there is a T[U ]-cut J such that

T[U ] 
 ConJ
U ;

(ii) There is a T[U ] + AxTU -cut J such that

T[U ] + AxTU 
 ConJ
U .

We first notice that in virtue of Lemma 6, AxTU becomes provable in T[U ] already
if U is finitely axiomatized.

Proof of Lemma 12 We prove (i) and (ii) simultaneously. Let J0 be a cut in which
Corollaries 2 and 3 hold and in which the logical axioms of U have been shown to be
true.

We recall that PrfU(k) is a Δb
1-formula in S1

2 expressing that k is the code of a
U-proof, and lst(k) a Σb

1 function yielding, when applied to a sequence k, the last
element of k. One first notices that the following formula B(k) is inductive

∀l ≤ k
(
(∀i ≤ lh(l))(lc((l)i) ∈ J0) ∧ PrfU(l) → ∀a Sat(lst· (l), a)

)
(12)

The crucial step is to obtain B(k + 1). If lst(k + 1) is a logical axiom, then its truth
follows by assumption and Corollary 4. If it is a nonlogical axiom and U is finitely
axiomatized, then lst(k + 1) is satisfied by all sequences by Lemma 6; otherwise we
employ the assumption AxTU . If on the other hand lst(k + 1) is obtained via Modus
Ponens or (Gen), then compositional axioms D.1-D.4, together with Corollary 3,
suffice to obtain the result. By Lemma 1 we shorten B to a cut J.

In other words, we have reflection in the cut J:

∀k
(
FmlLU

(k) ∧ ∃m (J (m) ∧ ProofU(m, k)) → ∀a Sat(k, a)
)

(13)

We notice that we tacitly assumed a monotone coding here as in the proof of Lemma
8: if k is a sequence, then (k)i < k with i < lh(x). We have thus Fml JU (k) in Eq. (13).

Given Eq. 13, we can conclude ConJ
U in the usual way, that is with the help of

Lemma 6.

Lemma 9 is now readily obtained by taking J as the domain of the interpretation.
We thus also have Proposition 2.

As observed by Heck, this holds for any Tarski-style typed theory of truth prov-
ing the truth of all axioms of the base theory, even in the case of theories constructed

38Cfr. for instance [9].
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in the usual, ‘entangled’ way. For our present purposes, however, it was sufficient
to formulate our arguments in terms of the particular setting under examination. The
proofs above can be easily adapted to the usual setting. We just mention few exam-
ples. We write CT�[U ] as the results of adding a full truth class to an arbitrary model
of U.

Observation 1 Let U be a finitely axiomatized extension of S1
2, then CT� [U ] proves

the consistency of U on a cut.

Observation 2 Let U be a schematic extension of S1
2, then CT� [U ]+‘all axioms of

U are true’ proves the consistency of U on a cut.

As a consequence, CT� [U ] (resp. CT� [U ]+‘all axioms of U are true’) interprets
S1
2 + ConU . To give some familiar examples, we have for instance,

(i) CT� [IΣn] proves the consistency of IΣn for each n and thus CT� [IΣn]
interprets S1

2 + ConIΣn ;
(ii) CT�+AxTPA proves the consistency of PA on a cut and thus CT�+AxTPA

interprets S1
2 + ConPA.

As far as the author knows, it is an open problem whether CT� [IΣn] interprets
IΣ1 + ConIΣn for all n, or whether CT�+AxTPA interprets PA + ConPA.

Observation 3 Let U contain S1
2. If CT� [U ] is interpretable in U, then CT� [U ] does

not prove that all axioms of U are true.

In the light of Observation 3 and of the fact that CT� [PA] and CT� [ZF] are inter-
pretable in PA and ZF respectively, we have, modulo a suitable formalization of the
syntax,

(i) CT� [PA] does not prove that all instances of induction of PA are true;
(ii) CT� [ZF] does not prove that all instances of replacement are true.

More on these arguments applied to the usual typed setting can be found in
[24]. In the next section we focus on the opposite direction. We show how the
Henkin-Feferman construction can give us an interpretation of the truth predicate
of T[U].

5.2 Truth with Disentagled Syntax and The Henkin-Feferman Construction

The idea that inspires this section is that, unlike the case of CT� [U ], the special sat-
isfaction class defined by T[U ] and variants thereof is indeed uniformly comparable
with the truth predicate of the Henkin-Feferman construction as it is always inter-
pretable, loosely speaking, as a truth predicate for ‘small numbers’. We first consider
for simplicity the case in which U is finitely axiomatized.

Theorem 1 (S1
2) Let U be finitely axiomatized. Then S1

2 + ConU � T[U ].
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Proof The idea of the proof is based upon the observation that the Henkin-Feferman
construction, as presented in §4, gives us the means to interpret the truth predicate
for the language of U given by T[U ].

We define a translation (.)F specified by a triple of domains (δs, δo, δsq) and
a mapping of symbols of LT into formulas of LU that for simplicity we won’t
distinguish from (.)F itself. We recall the proof of Lemma 8: the domain of our inter-
pretation was represented by Henkin constants in the S1

2 + ConU -cut I of numbers
associated with the leftmost consistent — with the completion of U — path in the
full binary tree. Constants in this cut will represent also the domain of quantifiers of
the ‘object-theoretic’ part of LT :

δo(x) :↔ ∃y
(
I (y) ∧ SentL′

U
(y) ∧ (y = �∃vϕ� ∨

y = �∀vϕ�) ∧ x = cy
·

)
,

Quantifiers ranging over variable assignments will be relativized to finite sequences
of elements of δo.

δsq(x) :↔ x is a (finite) sequence and (∀y ∈ x)(δo(y))

where x ∈ y is defined as in [3, §2.5]. As we have mentioned on page 10, the axiom C
governing sequences of variable assignments does not prevent one to interpret them
as finite sequences. All syntactic objects are relativized to the cut I; in other words,
δs = I .

Nonlogical constants are mapped by (·)F to corresponding formulas of LA in the
following way, where F(·) and sb(·, ·) are the truth predicate and the substitution
function given in the proof of Lemma 8. We also assume a suitable machinery for
renaming bound variables to avoid clashes. We thus have:

(R)F (x1, ..., xn) := F(sb(�R(v̄)�, 〈x1, ..., xn〉)) for n-ary relations R ∈ LU

(P )F (x1, ..., xn) := P(x1, ..., xn) for any relation symbol P of sort (s, ..., s);
(Sat)F (x, y) := F(sb(x, y));

((·)·)F (x, y, z) := ((x)y = z ∧ y < lh(x)) ∨ (y ≥ lh(x) ∧ z = 0)

in the last line, (x)y outputs the yth element of the finite sequence x.39

We check that S1
2 + ConU satisfies the translation of the axioms of T[U ]. Axioms

of U are obtained by Lemma 8. Axioms of S1
2 are assumed to be available in the cut

I. The translation of C. (cfr. Table 1) follows from the sequentiality of S1
2. To verify

the translations of the axioms for Sat, we focus on the instructive cases of atomic
formulas and quantified formulas.

Ad D.1: Sat(�R(v1, ..., vn)�, a) ↔ R(a(1), ..., a(n))

39Again a full definition can be found in [3, 4].
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Let us assume, without loss of generality, that R is of sort (o, o). We have, for
arbitrary x, y ∈ I and z ∈ δsq, F(sb(R· xy, z)). But by Eq. (9) in the proof of Lemma

8, this is just RF ((z)x, (z)y).

Ad D.4: Sat(�∀viϕ�, a) ↔ ∀b(∀j (j �= i → a(j) = b(j)) → Sat(�ϕ�, b))

Let x be the code of a formula of L′
U with only the variable coded by y free and

let x be in I. Thus y ∈ I . Moreover, let z be in δsq. We notice that if SentILU
(∀· vx),

then F(sb(x, 〈y〉) ↔ F(x(y/v)), where r(s/w) the standard substitution function
— provably total in S1

2 — replacing free variables with other terms in formulas.
For the left to right direction, if F(sb(∀· yx, z)), then obviously F(∀· yx). Thus

by the properties of F for all u ∈ δo, F(x(u/y)). If we now consider an arbitrary
sequence v ∈ δsq that differs from z only in what it assigns to the variable coded by
y, then we have F(sb(x, v)) as what v assigns to y can be taken to be arbitrary by
assumption.

For the other direction, given that for all v ∈ δsq that differ from an arbitrary
z ∈ δsq only in what they assign to the variable coded by y we have F(sb(x, v)),
we assume that there is w ∈ δo such that ¬F(x(w/y)). Now consider the sequence
s that is exactly like z but it assigns w to y. We thus have F(sb(x, s)), contradicting
¬F(x(w/y)).

By Lemma 5 and our assumption on U we also have

Corollary 5
(
S1
2

)
Let U be finitely axiomatized. Then Q + ConU � T[U ].

Moreover, since U is finitely axiomatized by assumption, we have T[U ] 
 AxTU .
Therefore by Propositions 1 and 2, we can characterize the canonical consistency
statement ConU for U as the unique solution, modulo provability in IΔ0(exp), to the
equation between T[U ] and the result of adding to Q a Π0

1 -sentence of the language
of U.

Proposition 3 Let U be finitely axiomatized. ConU is the unique Π1-sentence π ,
modulo provable equivalence in IΔ0(exp), such that

T[U ] ≡ Q + π.

To obtain the analogue of Proposition 3 for the case in which U is not finitely
axiomatizable, we focus instead on the theory T[U ] + AxTU . The reason was made
clear in the previous section: if we don’t have AxTU , we don’t know how to prove
the consistency of U on a cut, and this was shown to be essential to define the
interpretation of Q + ConU in a uniform way.40

40Of course there may be cases in which T[U ], with U not finitely axiomatizable, but still it can prove the
consistency of U on a cut.
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Corollary 6 S1
2 + ConU � T[U ] + AxTU .

Proof To obtain the result, it then suffices to show in S1
2 + ConU the translation of

∀k (AxU(k) → ∀a Sat(a, k)), (14)
However, from the proof of Lemma 8 we know that reflection holds in the cut I

(cfr. 10), that is in the cut defined by shortening (8) in Lemma 8. Thus we have

∀x (SentLU
(x) ∧ I (x) ∧ AxU(x) → F(x)) (15)

Therefore, it suffices to obtain in S1
2 + ConU that,

for all x ∈ SentILU
,AxF

U (x) → AxU(x). (16)

That is, if a number in the cut I is recognised as an axiom in the arithmetization
of the syntax relativized to the cut I, then it is also recognised as an axiom in the
unrelativized arithmetization in S1

2 + ConU . This, however, is unproblematic.

Thus by Lemma 5:

Corollary 7 Q + ConU � T[U ] + AxTU .

Again by Proposition 2 and Lemma 1, we finally have

Corollary 8 ConU is the unique Π1-sentence π , modulo provable equivalence in
IΔ0(exp), such that

T[U ] + AxTU ≡ Q + π.

By inspection of the proofs of Proposition 2 and Corollary 7 it follows that we can
replace in these results AxTU with ScTU , when U is schematic in the sense explained
in §5.1.

6 Reductions and Truth-Theoretic Content

In the introduction we emphasized three conceptual areas that have motivated and
inspired axiomatic investigations of the truth predicate. Using the fil rouge provided
by those categories, we look at what we achieved and what we could not achieve in
the previous sections.

There is no need to spend many words on the mathematical interest of the struc-
ture of the models of theories in the style of T[U ]. As far as the author can see, the
motivation for investigating theories of truth of this sort certainly does not reside in
the complexity of the model theoretic constructions that they force. As we briefly
sketched in §3 and how it is argued more extensively in [33], these theories give us
instead the possibility of formalizing informal metamathematical practice and of dis-
cerning patterns of reasoning involved in the provability of general claims involving
the notion of truth. It thus seems to be a better idea to consider to what degree our
work can be relevant for the other customary areas of application of axiomatic truth.
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I now discuss whether axioms of truth with built-in syntax help us in discovering new
connections between truth and set existence axioms or in providing new insights on
the notion of truth arising from the axioms under consideration.

6.1 Predicative Comprehension

A well-known example of how axiomatic truth theories are related to subsystems of
second-order arithmetic is represented by the strict connection between the theory
CT — that is PA + ‘there is a full inductive truth class’ — and the system ACA: the
truth predicate of CT can be defined in ACA and there is a relative interpretation of
ACA in CT.41 As we shall see in a moment, Theorem 1 above offers a new example
of reductions of this sort.

According to the Vicious Circle Principle, we cannot accept definitions ϕ(x) in
which the definiendum {x : ϕ(x)} belongs to the range of quantifiers in ϕ(x). If one
restricts the full comprehension schema to accommodate the vicious circle principle,
predicative comprehension is obtained.

Given a one-sorted, sequential theory U, there are several methods for adding
predicative comprehension to it.42 A natural choice would be to expand LU with a
new sort and extend U with the new scheme. Alternatively, one can use a flattened
version of this two-sorted theory. This will be the method we employ for obtaining
predicative comprehension. It works as follows: starting with LU , we expand it to the
language L2

U by means of predicates O, S corresponding to the sorts ob, cl of objects
and classes of them respectively and with a binary predicate E intended to express
membership of objects in sets. All quantifiers of LU are relativized to O; moreover,
we need an axiom forcing obvious conditions on E:

E(x,y) → O(x) ∧ S(y); (17)

Following [45], we define ϕ to be sorted if and only if there is a function s that
assigns the right sort to variables in ϕ, that is for all x, y ∈ Freev(ϕ),

(i) if R(x1, ..., xn) is a subformula of ϕ, then s(xi) is ob for 1 ≤ i ≤ n;
(ii) if E(x,y) is a subformula of ϕ, then s(x) is ob and s(y) is cl;
(iii) if x = y is a subformula of ϕ, then s(x) is identical to s(y);
(iv) quantifiers in ϕ are relativized to the sort s(x) for all variables x in ϕ.

Following again Visser’s notation, we call PC(U) the theory formulated in L2
U

whose axioms are the axioms of U in which all quantifiers are relativized to O and
the axiom of predicative comprehension

∀x̄∃y∀u(E(u,y) ↔ ϕ(u, x̄)) (PC)

where s(x) is ob in the sorted formula ϕ and quantifiers of ϕ are of sort ob as well.
We have:

41A detailed proof of both claims can be found in [23].
42We follow [45, 46].
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Theorem 2 (Visser) If U is finitely axiomatized and sequential, then PC(U) ≡ Q +
ConU .

We can thus extend our characterization of ConU to PC(·), when U is finite
and sequential: We have that T[U ] and PC(U) belong to the same degree of
interpretability. That is:

Corollary 9
Let U be finitely axiomatized and sequential. Then PC[U ] ≡ T[U ];

Moreover, we have:

Corollary 10 Let U be sequential and finitely axiomatized. Then ConU is the unique
Π0

1 -sentence π — modulo IΔ0(exp) provable equivalence — such that

PC(U) ≡ Q + π ≡ T[U ]

In order to obtain a similar result for an arbitrary, sequential U, we move to a
slightly more general framework.43 We first employ the fact, due to Vaught ([43]),
that for any sequential theory W one can find a provably identical theory W̃ that is
axiomatized by a single schema. If τ is our intensional, fixed Δb

1 representation ofW,
W̃ will be axiomatized by Στ .44 Given a theory U given by a single schema Συ , the
functor PC+(U) is defined exactly as PC(U) with the extra conditions that schematic
variables in Συ are treated like variables of sort cl and that its universal closure is
considered.

Theorem 3 (Visser [46]) Let U be sequential and axiomatized by a schema. Then
PC+(U) ≡ Q + ConU .

We can thus extend our characterization of the links between T[·] and PC[·] to
arbitrary, sequential theories:

Corollary 11 Let U be sequential. Then PC+(Ũ ) ≡ T[U ] + AxTU .

Finally, we have:

Corollary 12 Let U be sequential. Then ConU is the unique Π0
1 -sentence

π — modulo IΔ0(exp) provable equivalence — such that

PC+(Ũ) ≡ Q + π ≡ T[U ] + AxTU

43We still follow [45, 46].
44Vaught considers weaker assumptions on U than sequentiality. Moreover Vaught result, as noticed in
[45], can be verified in S1

2.
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We notice that Ũ crucially depends on Συ . Different choices of the formula rep-
resenting U may lead to non equivalent results. We refer to [45] for more details and
examples.

The possibility of getting rid of exponentiation in results of this sort is an open
problem.

6.2 Base Theories and Truth Theoretic Content

According to several authors,45 the conservativeness or the relative interpretability of
systems of truth over the base theory suggest at least the possibility of a reduction of
semantic resources to mathematical or syntactic resources. We have seen that theories
in the style of T[U ] and T[U ]+AxTU are conservative over and non interpretable inU.
These features, combined together, seem to be appealing for some variants of defla-
tionism that accept the requirement of conservativeness of the theory of truth over
the mathematical base theory but hold that truth still serves an indispensable expres-
sive role.46 In addition, model-theoretic conservativeness seem to be more appealing
than proof-theoretic conservativeness for the deflationist as the theory of truth does
not restrict the class of models of the object theories (Cfr. [34]). In this respect the
theories in the style of T[U ] display a similar status as Fischer’s PT−.47

From a methodological point of view, results such as Observations 1 and 2 and
the subsequent observations indicate that the choice of the base theory is highly rel-
evant to draw conceptual conclusions — even for theories constructed in the usual,
‘entangled’ way. Let us be explicit and consider the well-known case of the theo-
ries CT� [·]. CT� — that is CT� [PA] — is conservative and interpretable in the base
theory PA.48 If we move to finitely axiomatized base theories and consider theories
such as CT� [IΣn], for instance, the techniques of the shortening of cuts will entail its
non interpretability in IΣn.49 If our focus is on the notion of truth forced by the truth
axioms, it appears to be disappointing to know that inessential variations in the base
theories — inessential with respect to the way in which the theories fulfil the task of
mimicking structural properties of sentences — may impinge on our conclusions. In
other words, we may want either our ‘operator’ CT� [·] to perform in a uniform way
across theories interpreting a sufficient amount of syntax, or to have strong motiva-
tions for preferring one base theory over another. Now PA is usually taken to be the
standard choice. ZF is sometimes considered in alternative. But why? Do we have
strong philosophical reasons for these choices?

Surely there are practical motivations. PA or ZF represent safe environments in
which it is possible to reproduce and establish structural properties of the intended
bearers of truth. Moreover, they display a fundamental foundational role and much

45Again we have in mind [6, 13, 26, 29, 39].
46Such versions may be found in [13, 26]. A discussion of this form of deflationism in relation to the
results considered can be found in [36].
47For the presentation of PT− we refer to Fischer’s paper [15]. For a discussion of its role, see [26].
48Notice, we are reasoning in the usual setting.
49Although the theory of truth will remain conservative over IΣn.
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is known about their metamathematical properties. But do we have more than this?
What about possible alternatives? If we remain in the arithmetical realm, some
finitely axiomatized theories, such as IΣn for some n, might be a questionable choice:
in general we lack motivations for restricting the induction schema of PA to Σn-
induction; moreover, we know that there are theories that formalize the syntax of
formal languages in a natural way that are much weaker than these. Why not con-
sidering, for instance, a theory such as S1

2 or its synonymous theory of strings due to
Ferreira that is calibrated to give us an efficient treatment of syntactic notions and it
is arguably close to the theoretical optimality? If one employs Buss’ S1

2 as base the-
ory for our theory of truth, which is in a sense ‘minimal’ as it is interpretable in Q and
also known to be finitely axiomatizable, the addition of axioms stating the existence
of a truth class to it would yield a theory that is not interpretable in — and most likely
conservative over — S1

2, whereas the addition of axioms forcing the existence of a
truth class to PA determine a conservative and interpretable theory. Thus if conser-
vativity and non interpretability in the mathematical object theory are then desirable
features for the deflationist, does she also have reasons for supporting a specific
choice of the mathematical or syntactic base theory? It seems that more philosophical
work needs to be done and we defer the answer to these questions to a forthcoming
work.

Let us now move to a closer analysis of the technical material presented above.
If one aims at gaining some insights concerning the metaphysical status of the truth
predicate by comparing the theory of truth and the base theory, it is very likely that
she will have in mind a scenario in which there is at least a somewhat discernible
separation between truth axioms on the one hand and axioms of the object theory on
the other. We know, however, that things are slightly more complicated. As already
noticed by Heck and by [23], the theory of syntax represents a further variable that
has to be taken into account. Its role becomes apparent when schemata of the base
theory such as induction principles are extended to contain semantic vocabulary.
There are mathematical and there are syntactic uses of those extended schemata; as
shown in [33], moreover, this diagnosis can be extended also to typed theories of
compositional truth constructed over set-theoretic base theories.50 We refer to the ref-
erences for details but the idea is straightforward: inductive reasoning involving truth,
such as proofs by induction on the complexity of formulas, capture essentially truth-
theoretic and syntactic patterns of reasoning and should be distinguished, at least at
the level of philosophical reflection, from instances of those principles that refer to
the subject matter of base theory.

The framework investigated in the present work seem to suggest that similar con-
siderations can be applied to compositional truth axioms. On the one hand, in fact, we
know that also very weak truth axioms are in a sense deeply intertwined with assump-
tions on the ontology of expressions. Already the compositional axiom for negation
over pure predicate logic is not in some sense ontologically neutral as it entails the

50There it is also shown that the different roles played by different instances schemata involving the truth
predicate are much more evident in the case of set theoretic base theories.
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existence of two objects [22]. A truth axioms is always a truth-theoretic and syntac-
tic axiom. In the usual setting with entangled syntax, it seems, this amounts to saying
that we do not have definite criteria to distinguish between mathematical and truth-
theoretic content.51 Theories such as T[U ] above, on the contrary, are based upon
the possibility of forcedly distinguishing between truth-theoretic and syntactic con-
tent on the one side, and mathematical content on the other. If one looks for crystal
clear criteria for distinguishing between areas of metamathematical reflection and
focus on the axioms of truth qua principles of semantic nature, therefore, theories
of truth and expressions such as T[U] appear to be an inviting option; mathematical
objects belong to one sort and syntactic objects interacting with semantic machinery
to another. An evaluation of the impact that axioms of truth bear on the underly-
ing mathematical structure, if meaningful, seems thus to find a more comfortable
environment here than in the usual constructions.

The price to pay is of course the apparent rigidity of the framework at issue.
Also, the conservativeness of the theory of truth becomes an almost trivial prop-
erty and interpretability acquires a predominant role. If this is tolerated, however,52

it seems that some conceptual gains are reached. Corollaries 6 and 8 tell us that,
over an arbitrary base theory U, Tarski-style truth axioms bundled together with
enough syntax to make them meaningful can be characterized precisely as an inten-
sionally correct consistency statement for U. For arbitrary U, the truth-theoretic
conglomerate considered has to contain also the claim ascertaining the truth of all
instances of the schemata of U. These facts seem thus to deliver a clear message:
if one considers mutual interpretability as a trustworthy method of comparison,
axioms of truth-theoretic and syntactic content, when added to a mathematical
base theory, correspond to a metamathematical claim that, given Pudlák’s beauti-
ful version of Gödel’s Second Incompleteness Theorem, is out of reach for the base
theory itself.

We end the paper with a countercheck for our latter remarks. For them to
count as a (partial) characterization of compositionality in a typed theory of truth,
in fact, one needs to ascertain that similar characterizations are not available for
typed axiomatizations of the truth predicate that allegedly reflect different intu-
itions on the truth predicate, such as disquotational theories. The following claim
tells us that in fact disquotational truth axioms cannot be equated to an intension-
ally correct consistency statement for the object theory, at least when the latter is
sequential.

Let ut[U ] be the theory in LT whose axioms are the axioms of U, the axioms of
S1
2, C. in Table 1, and the schema

∀j1, ..., jn (Sat(�ϕ�(j1/i1, ..., jn/in), a) ↔ ϕ(a(j1), ..., a(jn))) (utb)

51Cfr. also [23, §21.2].
52And we judge that some rigidity is mandatory when one wants to oppose truth-theoretic contents to other
components of our systems.
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for any LU -formula ϕ(vi1 , ..., vin) with the free variables displayed. Moreover, let
t[U ] like ut[U] but with Eq. (utb) replaced by

∀a Sat(a, �ϕ�) ↔ ϕ (tb)

for all LU -sentences ϕ.
We have:

Lemma 13 Let U be sequential. Then U �loc ut[U ].

Proof Let us consider an arbitrary finite subsystem ut[U ]0 of ut[U ]. We inter-
pret ut[U ]0 in U . By our overall assumptions on U, U � S1

2: this takes care of
the syntactic part of ut[U ]0. The object theoretic part is straightforwardly inter-
preted in U. The domain of sequences is relativized to sequences in U; The
function (·)· to a formula β(x, y, z) characterizing the unique object x correspond-
ing to the yth element of z, existing by the sequentiality of U. Moreover, we
have

(Sat)κ(x, y) :↔ (x = �ϕ1(v1, ..., vn1)� ∧ ϕ1((y)1, ..., (y)n1)) ∨
...

(x = �ϕk(v1, ..., vnk
)� ∧ ϕk((y)1, ..., (y)nk

))

where ϕ1(v1, ..., vn1), ..., ϕk(v1, ..., vnk
) are the finitely many LU -formulas occur-

ring in the disquotational axioms of ut[U ]0 with exactly the free variables displayed.
It is almost immediate to verify that the translations of formulas of the finitely many
instances of Eq. (utb) occurring in ut[U ]0 become provable in U.

Proposition 4 Let U be as in Lemma 13. Then ut[U ] does not interpret Q + ConU .

Proof Assume that ut[U ] interprets Q + ConU . Thus for an appropriate finite
subsystem of ut[U ], let us call it ut[U ]1, we have

ut[U ]1 � Q + ConU

By Lemma 13, U � Q + ConU , which is impossible by Pudlák’s result.

A fortiori, we obtain

Corollary 13 Let U be sequential. t[U ] does not interpret Q + ConU .

We notice that Proposition 4 would not hold when ut[U ] proves already the con-
sistency of U on a cut. This is for instance the case when U is predicate logic
Pred: S1

2 proves in fact ConPred, by formalizing the construction of a one-element
model.
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Appendix

Definition 1
(
Basic Axioms of S1

2

)
a ≤ b → a ≤ Sb a �= Sa

0 ≤ a a ≤ b ∧ a �= b ↔ Sa ≤ b

a �= 0 → 2 × a �= 0 a ≤ ∨b ≤ a

a ≤ b ∧ b ≤ a → a = b a ≤ b ∧ b ≤ c → a ≤ c

|0| = 0 |S0| = S0
a �= 0 → |2 × a| = S(|a|) ∧ |S(2 × a)| = S(|a|) a ≤ b → |a| ≤ |b|
|a#b| = S(|a| × |b|) 0#a = S0
a �= 0 → 1#(2 × a) = 2 × (1#a)∧
1#(S(2 × a)) = 2 × (1#a) a#b = b#a
|a| = |b| → a#c = b#c |a| = |b| + |c| → a#d = (b#d) × (c#d)

a ≤ a + b a≤b∧a �=b→S(2×a)≤2×b∧ S(2 × a) �= 2 × b

a + b = b + a a + 0 = a

a + Sb = S(a + b) (a + b) + c = a + (b + c)

a + b ≤ a + c ↔ b ≤ c a × 0 = 0
a × Sb = (a × b) + a a × b = b × a

a × (b + c) = (a × b) + (a × c) S0 ≤ a → (a × b ≤ a × c ↔ b ≤ c)

a �= 0 → |a| = S(|� 1
2a�|) a = � 1

2b� ↔ 2 × a = b ∨ S(2 × a) = b
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